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Abstract 

A model that is self-similar for one-dimensional unsteady isothermal flows in a rotating atmosphere is 

presented, where the shock wave (SW) is generated by a cylindrical piston that moves with time 

according to an exponential law. The ideal gas is subject to an “azimuthal magnetic field (AMF) and 

has variable density”. Theoretically, a SW that is diverging should be moving away from the axis of 

symmetry. The fluid's axial and azimuthal components are presumed to be changeable in the 

surrounding medium. It is assumed that the surrounding medium's fluid velocities, starting density, 

and initial magnetic field are dynamic and subject to power laws. Assuming a perfectly symmetrical 

gas that rotates with a constant intensity, they model the radiation flux passing through it and the 

energy absorption occurring solely behind the SW, which travels in the reverse direction as the 

radiation flow. Changes to the Alfven-Mach number and diabatic exponent are studied for their 

consequences. SWs exhibit diminishing effects when a magnetic field is present, as has been 

discovered. Additionally, it is noted that in the case of adiabatic flow, the impact of a stronger magnetic 

field is more pronounced compared to isothermal flow. 
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1. Introduction 

The ionization of gases across the shock's target area and the medium's subsequent behavior consistent 

with a very electrically conductive medium are both consequences of the high temperatures typically 

experienced during SW propagation. Therefore, gas-dynamic flow and electromagnetic theory should 

be studied concurrently for a comprehensive examination of this type of problem. It is critical to 

investigate the transmission of CSWs in “conducting gas in the circumstance of an axial or AMF while 

performing tests on the pinch effect, bursting wires, and so on. Analyzing the connection of the 

magnetic field with the other flow variables is critical because the material inside a star is a plasma 

with infinite electrical conductivity that exists within a strong magnetic field” [1]. 

The interplay of various physical parameters in complex systems often leads to intricate and 

fascinating phenomena. In this context, the research delves into the intriguing dynamics of strong 

molecule thickness and the presence of an AMF on shock strength, cylindrical separation, and flow 

characteristics within a medium. Understanding the ramifications of these interactions is vital for a 

multitude of applications in fields ranging from astrophysics and aerospace engineering to plasma 

physics. The strength of SWs is a critical parameter in many natural and engineered systems. It directly 

impacts the energy transfer, turbulence, and compression within the medium. In this study, they aim to 

explore how variations in strong molecule thickness affect the shock strength, shedding light on the 

underlying mechanisms governing shock dynamics. 

The goal of this study “is to find the solutions that are self-similar to the flow behind the CSW that a 

moving piston creates in a non-ideal gas flowing in a rotational axisymmetric flow with a variable 
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AMF and a variable axial component of the fluid velocity, all while maintaining isothermal flow 

conditions given by Nath” [2,3]. 

As a result, “the one-dimensional unsteady self-similar rotational axisymmetric flow of a non-ideal 

gas behind a shock that is emitted by a cylinder piston that moves exponentially in time while being 

subjected to a magnetic field is the subject of this investigation. It is assumed that the exponential law 

proposed by Ranga Rao and Ramanna governs the piston's movement”[4]. 

                                                    𝑟𝑝 = 𝐶 exp(𝜎𝑡) , 𝜎 > 0                                                                  (1) 

Within this particular framework, “σ represents a constant with dimensions, 𝑟𝑝 denotes the radius of 

the piston, and 'C' signifies the initial radius of the piston”. Moreover, the variable t symbolizes the 

concept of time. 

Additionally, the exponential law should be followed by the shock propagation. 

                                                             𝑟𝑠 = 𝐷 exp (𝜎𝑡)                                                                (2) 

The shock radius, denoted by 𝑟𝑠, and the dimensional constant by D. The value of D is dependent on 

the 'C' piston's non-dimensional location. 

In this context, the isothermal flow that is being considered is physically realistic. The solutions are 

shown in Sections 2 and 3, with the assumption that the flow is isothermal. The effects of various 

parameters like “the ratio of the gas's specific heats, the gas's non-idealness, and the Alfven-Mach 

number are examined in relation to the flow variables and the shock strength. It is in section 4 that they 

discover the solutions to the problem based on isothermal flows”. Additionally, the conclusion of the 

research is presented in the fifth portion of the paper. 

 

1.1 SWs: A Fundamental Parameter 

SWs are a crucial concept in fluid dynamics, playing a fundamental role in a wide range of scientific 

and engineering applications. Understanding the significance of SWs in fluid dynamics and their 

practical implications is essential for many fields. Here's an explanation of their importance: 

1) Energy Transfer and Compression: SWs are abrupt, high-energy disturbances that travel through 

a fluid medium, compressing and transferring energy. This compression and energy transfer are 

pivotal in a variety of situations, such as supersonic and hypersonic flight, explosions, and 

industrial processes. In aerodynamics, for example, SWs are responsible for the compression of air 

and the resulting increase in temperature and pressure, which has significant implications for 

aircraft design and performance 

2) Turbulence and Mixing: SWs can induce turbulence and mixing in fluids. When a SW interacts 

with a boundary or another SW, it can create turbulent flow patterns. These turbulent flows can 

influence the dispersion of particles and the mixing of materials in a fluid, impacting processes like 

combustion in engines, pollutant dispersion in the atmosphere, and even the behavior of 

supernovae in astrophysics. 

3) Astronomical Phenomena: In astrophysics, SWs are commonly observed in various celestial 

events, including supernovae, pulsar wind nebulae, and the formation of galaxies and stars. They 

play a vital role in redistributing energy and matter in space, influencing the dynamics of the 

universe. 

4) Biomedical and Medical Applications: SWs are used in medical procedures, such as lithotripsy, 

for breaking down kidney stones without invasive surgery. Understanding how SWs propagate 

through tissues is crucial in improving the efficiency and safety of these medical treatments. 

5) Explosive Detonation and Blast Waves: In military and defense applications, understanding the 

behavior of SWs is essential for designing protective structures, assessing the effects of explosions, 

and optimizing the performance of explosive devices. 

6) Material Science and High-Pressure Studies: SWs can be used to study material properties at 

extreme pressures. This is valuable for research in materials science and geophysics to understand 

the behavior of materials under extreme conditions. 

7) Aerospace Engineering: The study of SWs is indispensable for the design of supersonic and 

hypersonic aircraft and spacecraft. Efficiently controlling and mitigating SWs can lead to 
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breakthroughs in aerospace engineering, making high-speed travel more practical and cost-

effective. 

 

2. Equations fundamentals and boundary conditions 

The gas “dynamics equations in Eulerian coordinates that describe the motion of rotational 

axisymmetric non-ideal gas in a one-dimensional isothermal flow as a function of a gravitational field”, 

an AMF or axial magnetic field, and other external fields can be stated as [5-8] 
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𝜕𝑚

𝜕𝑟
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𝜕𝑇

𝜕𝑟
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In the given equation, “𝑡 𝑎𝑛𝑑 𝑟 are time and space coordinates that are not related to each other. The 

variables 𝑝, 𝜌, 𝑢, 𝑎𝑛𝑑 𝑤 represent the pressure, density, radial, azimuthal, and axial components of the 

fluid velocity 𝑉 ⃗⃗  ⃗ in the cylindrical coordinates (r, θ, z). The variables ℎ, 𝜇, 𝑎𝑛𝑑 𝑇 are for the AMF, 

magnetic permeability, and temperature, respectively. In this case, they believe the gas's electrical 

conductivity to be limitless” [9]. 

Also, 

𝑣 = 𝐴𝑟, 
In above equation, “A stands for the medium's angular velocity at a radial distance 𝑟 from the symmetry 

axis”. Here, the vector of vorticity 

                                                                      𝜁 =
1

2
𝐶𝑢𝑟𝑙𝑞                                                                              (8) 

has the components 

                                                𝜁𝑟 = 0, 𝜁𝜃 = −
1

2

𝜕𝑤

𝜕𝑟
, 𝜁𝑧 =

1

2

𝜕

𝜕𝑟
(𝑟𝑣)                                                     (9) 

If “the thermal energy, 𝐸𝑡, i.e.𝐸𝑖 ≪ 𝐸𝑡, is significantly greater than the average particle interaction 

energy, 𝐸𝑖, then After that, they assert that the gas is flawless. When the particle-particle contact is tiny 

or when the gas is sufficiently rarefied, this condition is satisfied. The ideal gas hypothesis is generally 

an acceptable choice in many astrophysical contexts[10]. Figure 1 shows the directions in which the 

components of the velocity vector”. 

 
Figure 1: The velocity vector's components' directions  

It is recommended that “an equation of state (1-7) be added to the system”. An assumption is made 

about the medium's behavior as an ideal gas, such that [11,12] 

                                                        𝑝 = Γ𝜌𝑇; 𝑒 = 𝐶𝑣𝑇 =
𝑝

(𝛾−1)𝜌
                                                          (10) 

According to the equation, “𝐶 represents the gas constant, 𝑇 represents the temperature, 𝐶𝑣 =
Γ

𝛾−1
  

represents the specific heat at constant volume, and 𝛾 represents the ratio of specific heats”. 
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“A powerful CSW is meant to be moving through an ideal gas that has not been disturbed and has a 

variable density. When there is an AMF with a zero-radial-velocity and variable-axial-velocity 

configuration, this takes place. Just in front of the shock front are these flow variables”: 

                                                                       𝑢 = 𝑢𝑎 = 0                                                                   (11) 

                                                          𝜌 = 𝜌𝑎 = 𝜌0 exp(−𝜎𝑡) , 𝜎 > 0                                               (12) 

                                                                𝑣 = 𝑣𝑎 = 𝐶 exp (𝛿𝑡)                                                           (13) 

                                                               𝑤 = 𝑤𝑎 = 𝐸 exp (𝛼𝑡)                                                        (14) 

                                                               ℎ = ℎ𝑎 = ℎ0 exp (−𝜆𝑡)                                                       (15) 

The dimensional constants are denoted by the letters 𝜌0, 𝐶, 𝐸, ℎ0, 𝜎, 𝛿, 𝛼, whereas the subscript 'a' 

specifically denotes to the circumstances that are immediately before the shock front. 

 

3. Self-similarity transformations 

Similar solutions could be obtained by expressing the flow pattern's field variables as dimensionless 

functions of 𝜉 [13-15] 

𝑢 = 𝑊𝑈(𝜉), 𝑣 − 𝑊𝜙(𝜉), 𝑤 = 𝑊𝑉(𝜉), 𝜌 =𝜌0𝑢 = 𝑊𝑈(𝜉), 𝑣 = 𝑊𝜙(𝜉), 𝑤 = 𝑊𝑉(𝜉), 𝜌 =
𝜌0𝐺(𝜉) 

𝑝 = 𝜌0𝑊
2𝑃(𝜉), √𝜇ℎ = √𝜌0𝑊𝐻(𝜉), 𝑒 = 𝑊2𝐸(𝜉), 𝑗 = 𝑗0𝐽(𝑛)                                                        (16) 

U,𝜙, 𝑉, 𝐺, 𝑃, 𝐻, 𝑎𝑛𝑑 𝐸 are all functions of 𝜉 only, the dimensionless quantity is 𝜉 =
𝑟

𝑅
 [16,17]. 

It is necessary for M and 𝑀𝐴  to be constants in order for similarity solutions to exist; therefore, 

                                                       −𝜆 = 2𝛿 + 2, 𝑎𝑛𝑑 𝜆 = 2𝜎                                                                    (17) 

Thus, 

                                                 𝑀2 = 𝛾−1 [−
1

2
+

𝜌0𝐶𝑎
2

(2𝛿+2)𝜇ℎ𝑎
2]

−1

𝑀𝐴
−2                                                (18) 

It is possible to convert and simplify equation 18 by making use of similarity transformations from 

equation 16. 
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𝜆

2
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+
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−
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By using the similarity transformations (19-22), the shock conditions (1-7), which were turned into 

[18] 
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Where  

                                   𝐿 = 𝐿(𝜉) = [
𝑈2

𝜉
− (𝑈 − 𝜉)

𝜎

𝑖
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2𝐻2
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and 

𝜃 = 𝜃(𝜉) =
2𝐺2𝛽

2𝐺𝛽2(1−𝛽)+𝐺𝑀𝐴
−2(𝛽2−1)+2𝛽𝐻2−2𝐺𝛽(𝑈−𝜉)2

  

They derived “the non-dimensional components of the velocity vector in the flow-filed after the shock 

by applying similarity transformations”. These components are 𝑙𝑟 =
𝜁𝑟

𝑉/𝑟𝑠
, 𝑙𝜃 =

𝜁𝜃

𝑉/𝑟𝑠
, 𝑙𝑧 =

𝜁𝑧

𝑉/𝑟𝑠
. 

𝑙𝑟 = 0  
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𝑙𝜃 =
𝑊

2(𝑈−𝜉)
  

𝑙𝑧 = −
𝜙

(𝑈−𝜉)
  

The shock condition can be used to determine “the boundary condition at the strong shock front” (1-

7), which indicates that 

𝐺(1) =
1

𝛽
  

𝑈(1) = (1 − 𝛽)   

𝑃(1) = [(1 − 𝛽) +
𝑀𝐴

−2

2
(

1

𝛽2)]  

𝜙(1) =
𝐶

𝑖𝜂
  

𝑊(1) =
𝐸

𝑖𝜂
  

𝐻(1) =
1

𝛽𝑀𝐴
                                                                                                                                 (29) 

Thus, “it is essential to use the equation 𝛿 = 𝑖 = 𝛼 to get the answer for similarity. The condition that 

must be met at the surface of the piston, in addition to the shock requirements, is that the fluid's velocity 

must be the same as the piston's velocity. The condition that must be met is this. This kinematic 

condition at the piston face could be expressed in a non-dimensional form as” 

                                                                      𝑈(𝜉𝑝) = 𝜉𝑝                                                             (30) 

 

4. Result and Discussion 

Using the fourth-order Runge-Kutta method, numerically integrating the set of differential equations 

(23)-(27) with the boundary conditions (29) and (30) yields the distributions of the flow variables in 

the flow field behind the shock front. 'Mathematica' software is employed for numerical integration, 

with a default setting of one thousand steps. “This ensures that the step size (ℎ) is equal to the distance 

between a neighboring point and the inner expanding surface or the shock front, divided by one 

thousand. As an example, consider curve 1 in Figure 2, where ℎ = 1.7945 × 10−4. When using the 

Runge–Kutta method of order four, the value of the interpolating function is accurate up to the first 

four powers of h”. However, the approach contains errors in the order of ℎ5. When it comes to the 

fourth-order Runge–Kutta formula, they highly recommend that readers consult Vishwakarma and 

Nath [19]. For “mathematical integration, the values of the constant parameters are taken to be 𝛾 =
4

3
,
5

3
;  𝑀𝐴

−2 = 0, 0.01, 0.02, 0.05, 0.1; 𝑎𝑛𝑑 𝑡 𝑡0 = 1,2⁄  [20-25]. When considering completely ionized 

gas with 𝛾 = 5/3 and relativistic gas with 𝛾 = 4/3, it is important to note that these two values of c 

represent the broadest range of values seen in actual stars. Therefore, it applies to stellar medium. As 

shown by Rosenau and Frankenthal [26], the effects of the magnetic field on the flow field behind the 

SW are deemed to be substantial when the value of 𝑀𝐴
−2 is more than or equal to 0.01. Consequently, 

the values of 𝑀𝐴
−2 provided above are used for computation in the current problem”. 

In the non-magnetic scenario, the value 𝑀𝐴
−2 = 0  stands out as the appropriate value. The current 

study is an “allowance of the work that Nath and Nath have done by consideration the rotation of the 

medium as well as the component of the vorticity vector (see Figure 2(C), (F), (H), and (I))”. 

There are two tables that display the variation in the density ratio 𝛽(= 𝜌1/𝜌2) throughout the shock 

front and the location of the inner expanding surface. Table I displays the variation for various values 

of 𝑀𝐴
−2 with 𝛾 = 5/3, while Table II displays the variation for dissimilar values of 𝑀𝐴

−2 and 𝛾 with 
𝑡

𝑡0⁄ = 1,1.5,2.” 

The flow variables 
𝑢

𝑢1
,

𝑣

𝑣1
,

𝑤

𝑤1
,

𝑝

𝑝1
,

𝜌

𝜌1
,

ℎ

ℎ1
,

𝑗

𝑗1
 are depicted in Figure 2(A)–(I). Additionally, “the non-

dimensional azimuthal component of the vorticity vector 𝑙𝜃  and the non-dimensional axial component 

of the vorticity vector 𝑙𝑧 are shown in relation to the similarity variable 𝜂 at different values of the 

parameters 𝑀𝐴
−2 and 𝛾”. 
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(A)                                                                           (B) 

       
                                       (C)                                                                             (D) 

         
                                         (E)                                                                                (F) 
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                                          (G)                                                                         (H) 

 
(I) 

Figure 2: “Reduced flow changeable variation behind the shock front (A) Radial velocity, (B) 

azimuthal velocity, (C) axial velocity, (D) pressure, (E) density, (F) AMF, (G) radiation flux, (H) 

non-dimensional vorticity vector, and (I) non-dimensional axial vorticity vector”. 

It can be seen in “Figure 2(A) that the reduced radial component of fluid velocity, denoted by 
𝑢

𝑢1
, 

reductions as they move from the shock front to the inner expanding surface when there is a magnetic 

field present. On the other hand, when there is no magnetic field present, the reduced radial component 

of fluid velocity decreases near the shock front and rises near the inner expanding surface”.  

As shown in Figure 2(B)-(I), “as they move from the shock front to the inner expanding surface, there 

is a decrease in the azimuthal component of fluid velocity 
𝑣

𝑣1
,  density 

𝜌

𝜌1
,  pressure 

𝑝

𝑝1
,  and radiation 

flux 
𝑗

𝑗1
, but an increase in the axial component of fluid velocity 

𝑤

𝑤1
, AMF 

ℎ

ℎ1
, and both the azimuthal 

and axial components of the vorticity vectors 𝑙𝜃 and 𝑙𝑧, respectively”. 

As a result, “the gas's SW production is less affected by an increase in its adiabatic exponent. 

Additionally, the fluctuation in the value of the adiabatic index has a greater impact on the flow 

variables when the initial magnetic field is either weak or absent. The effect of a rise in the value of 

𝑀𝐴
−2 This occurs when the intensity of the magnetic field increases”. 

“In order to reduce the shock strength, it is necessary to raise the value of 𝛽, as shown in Table I. 

(i) To lower the value of 𝜂𝑝, which means to measure the distance among the inner expanding surface 

and the shock front. From a physical point of view, this indicates that the gas behind the shock is 

fewer compressed, which implies that the shock strength is reduced (see Table I); 
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(ii)  In order to enhance the flow variables 
𝑣

𝑣1
 and 

𝜌

𝜌1
, while simultaneously decreasing the flow 

variables 
𝑢

𝑢1
,

𝑤

𝑤1
,

ℎ

ℎ1
,

𝑗

𝑗1
; , as well as 𝑙𝜃 and 𝑙𝑧 at any point in the f low-field behind the shock front 

(refer to Figure 1(A)–(C), (E) (F), and (H)–(I)). 

(iii) To raise the decreased pressure 
𝑝

𝑝1
 but the reverse behavior is seen for the reduced radiation flux 

𝑗

𝑗1
 in the flow field behind the shock in general (refer to Figure 2(D) and (G) for more information)”. 

Therefore, the existence of a magnetic field produces an impact that is similar to a disappearing SW. 

A comparative impact on the thickness, the azimuthal and pivotal part of liquid speed, and the vorticity 

vector has likewise been seen when the strength of the encompassing attractive field or the adiabatic 

type of the gas increments. However, these parameters behave in opposite ways when it comes to the 

radial component of fluid velocity and radiation flux. 

Table I: The density ratio 𝛽(= 𝜌1/𝜌2) varies over the shock front and inner expanding surface at 

various 𝑀𝐴
−2 with 𝛾 =

5

3
. 

𝑴𝑨
−𝟐 𝜷 Inner expanding surface position 𝜼𝒑 (=

𝒓𝒑

𝑹
) 

  𝒕
𝒕𝟎

⁄ = 𝟏 𝒕
𝒕𝟎

⁄ = 𝟐 

0 0.260000 0.757200 0.831734 

0.01 0.261040 0.314055 0.323670 

0.02 0.271706 0.213770 0.209205 

0.05 0.301950 0.149961 0.135350 

0.1 0.348383 0.131740 0.113664 

Table II: The density ratio 𝛽(= 𝜌1/𝜌2) varies over the shock front and inner expanding surface at 

various 𝑀𝐴
−2 with 𝛾 

𝟏 𝜸 𝜷 Inner expanding surface position  𝜼𝒑 (=
𝒓𝒑

𝑹
) 

   𝒕
𝒕𝟎

⁄ = 𝟏 𝒕
𝒕𝟎

⁄ = 𝟏. 𝟓 𝒕
𝒕𝟎

⁄ = 𝟐 

 

0 

4

3
 

0.142860 0.890958 0.907762 0.918540 

5

3
 

0.260000 0.757200 0.803697 0.831734 

0.02 4

3
 

0.185151 0.281775 0.267486 0.258403 

5

3
 

0.271706 0.213770 0.210653 0.209205 

0.05 4

3
 

0.232801 0.215954 0.203646 0.195926 

5

3
 

0.301950 0.149961 0.140657 0.135350 

0.1 4

3
 

0.296399 0.185652 0.173648 0.166134 

5

3
 

0.348383 0.131740 0.123795 0.113664 

 

5. Conclusion 

This inquiry focuses on the self-similar flow that occurs when a strong exponential cylindrical shock 

wave passes through a rotating axisymmetric ideal gas, as well as the isothermal flow in the presence 

of an axial magnetic field. The SW is pushed out by a piston that moves in time in accordance with an 

exponential law. Even though the problem of explosion in rotating conducting media is the primary 

focus of this investigation, the approach and analysis that have been provided can be applied to a wide 

range of other physical systems that have non-linear hyperbolic partial differential equations. The study 
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of flare-produced shocks in the solar wind, nucleus explosions, pressurized vessel ruptures, and the 

central regions of star burst galaxies, as well as the description of shocks in supernova explosions can 

all benefit from SWs in axisymmetric, perfectly rotating gas with a decreasing initial density and 

magnetic field. This study may lead to the following conclusions:  

• The shock strength increases with time in the absence of a magnetic field; However, when a 

magnetic field is present in general, the opposite behavior occurs. 

• SW dissipation is caused by “magnetic fields the adiabatic exponent and magnetic field have no 

effect on shock intensity in rotational media”. However, as the adiabatic exponent rises, the 

shock's influence increases in a non-rotating medium with a magnetic field. 

• When the “time (𝑡 𝑡0⁄ ), is less than or equal to 1.5, the density and pressure in both rotating and 

non-rotating media drop as a function of time (𝑡 𝑡0⁄ )”. 

• It is essential to keep in mind that the wave's total energy in the disturbed zone fluctuates over time 

and is not constant. Additionally, the SW's velocity fluctuates. 
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